Nuprl Lemma : repn_wf

[T:Type]. ∀[x:T]. ∀[n:ℕ].  (repn(n;x) ∈ {z:T| x ∈ T}  List)


Proof




Definitions occuring in Statement :  repn: repn(n;x) list: List nat: uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T repn: repn(n;x) prop: nat:
Lemmas referenced :  primrec_wf list_wf equal_wf nil_wf cons_wf int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin setEquality cumulativity hypothesisEquality because_Cache hypothesis lambdaEquality dependent_set_memberEquality natural_numberEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[n:\mBbbN{}].    (repn(n;x)  \mmember{}  \{z:T|  z  =  x\}    List)



Date html generated: 2017_04_17-AM-07_49_41
Last ObjectModification: 2017_02_27-PM-04_23_28

Theory : list_1


Home Index