Nuprl Lemma : repn_wf
∀[T:Type]. ∀[x:T]. ∀[n:ℕ].  (repn(n;x) ∈ {z:T| z = x ∈ T}  List)
Proof
Definitions occuring in Statement : 
repn: repn(n;x)
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
repn: repn(n;x)
, 
prop: ℙ
, 
nat: ℕ
Lemmas referenced : 
primrec_wf, 
list_wf, 
equal_wf, 
nil_wf, 
cons_wf, 
int_seg_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
hypothesis, 
lambdaEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[n:\mBbbN{}].    (repn(n;x)  \mmember{}  \{z:T|  z  =  x\}    List)
Date html generated:
2017_04_17-AM-07_49_41
Last ObjectModification:
2017_02_27-PM-04_23_28
Theory : list_1
Home
Index