Nuprl Lemma : set-equal-permute

[T:Type]. ∀as,bs:T List.  set-equal(T;as bs;bs as)


Proof




Definitions occuring in Statement :  set-equal: set-equal(T;x;y) append: as bs list: List uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] set-equal: set-equal(T;x;y) iff: ⇐⇒ Q and: P ∧ Q implies:  Q or: P ∨ Q member: t ∈ T prop: rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  l_member_wf or_wf member_append append_wf all_wf iff_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut independent_pairFormation sqequalHypSubstitution unionElimination thin inrFormation hypothesis lemma_by_obid isectElimination hypothesisEquality inlFormation because_Cache addLevel allFunctionality productElimination impliesFunctionality dependent_functionElimination independent_functionElimination sqequalRule lambdaEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}as,bs:T  List.    set-equal(T;as  @  bs;bs  @  as)



Date html generated: 2016_05_14-PM-01_37_31
Last ObjectModification: 2015_12_26-PM-05_27_52

Theory : list_1


Home Index