Nuprl Lemma : set-equal_wf

[T:Type]. ∀[x,y:T List].  (set-equal(T;x;y) ∈ ℙ)


Proof




Definitions occuring in Statement :  set-equal: set-equal(T;x;y) list: List uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  set-equal: set-equal(T;x;y) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  all_wf iff_wf l_member_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x,y:T  List].    (set-equal(T;x;y)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-01_37_15
Last ObjectModification: 2015_12_26-PM-05_28_02

Theory : list_1


Home Index