Nuprl Lemma : upto_wf
∀[n:ℤ]. (upto(n) ∈ ℕn List)
Proof
Definitions occuring in Statement : 
upto: upto(n)
, 
list: T List
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
upto: upto(n)
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
Lemmas referenced : 
from-upto_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality
Latex:
\mforall{}[n:\mBbbZ{}].  (upto(n)  \mmember{}  \mBbbN{}n  List)
Date html generated:
2016_05_14-PM-02_02_56
Last ObjectModification:
2015_12_26-PM-05_11_17
Theory : list_1
Home
Index