Nuprl Lemma : upto_wf

[n:ℤ]. (upto(n) ∈ ℕList)


Proof




Definitions occuring in Statement :  upto: upto(n) list: List int_seg: {i..j-} uall: [x:A]. B[x] member: t ∈ T natural_number: $n int:
Definitions unfolded in proof :  int_seg: {i..j-} uall: [x:A]. B[x] member: t ∈ T upto: upto(n) lelt: i ≤ j < k and: P ∧ Q
Lemmas referenced :  from-upto_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry intEquality

Latex:
\mforall{}[n:\mBbbZ{}].  (upto(n)  \mmember{}  \mBbbN{}n  List)



Date html generated: 2016_05_14-PM-02_02_56
Last ObjectModification: 2015_12_26-PM-05_11_17

Theory : list_1


Home Index