Nuprl Lemma : zip_cons_nil_lemma

b,a:Top.  (zip([a b];[]) [])


Proof




Definitions occuring in Statement :  zip: zip(as;bs) cons: [a b] nil: [] top: Top all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T zip: zip(as;bs) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3]
Lemmas referenced :  top_wf list_ind_cons_lemma list_ind_nil_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}b,a:Top.    (zip([a  /  b];[])  \msim{}  [])



Date html generated: 2016_05_14-PM-03_14_31
Last ObjectModification: 2015_12_26-PM-01_45_55

Theory : list_1


Home Index