Nuprl Lemma : assoced_inversion

a,b:ℤ.  ((a b)  (b a))


Proof




Definitions occuring in Statement :  assoced: b all: x:A. B[x] implies:  Q int:
Definitions unfolded in proof :  assoced: b all: x:A. B[x] implies:  Q and: P ∧ Q cand: c∧ B member: t ∈ T uall: [x:A]. B[x] prop:
Lemmas referenced :  divides_wf istype-int
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :lambdaFormation_alt,  sqequalHypSubstitution productElimination thin cut hypothesis independent_pairFormation Error :productIsType,  Error :universeIsType,  introduction extract_by_obid isectElimination hypothesisEquality Error :inhabitedIsType

Latex:
\mforall{}a,b:\mBbbZ{}.    ((a  \msim{}  b)  {}\mRightarrow{}  (b  \msim{}  a))



Date html generated: 2019_06_20-PM-02_21_03
Last ObjectModification: 2018_10_03-AM-00_35_52

Theory : num_thy_1


Home Index