Nuprl Lemma : assoced_transitivity

a,b,c:ℤ.  ((a b)  (b c)  (a c))


Proof




Definitions occuring in Statement :  assoced: b all: x:A. B[x] implies:  Q int:
Definitions unfolded in proof :  assoced: b all: x:A. B[x] implies:  Q and: P ∧ Q cand: c∧ B member: t ∈ T guard: {T} uall: [x:A]. B[x] prop:
Lemmas referenced :  divides_transitivity divides_wf istype-int
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :lambdaFormation_alt,  sqequalHypSubstitution productElimination thin cut hypothesis introduction extract_by_obid dependent_functionElimination hypothesisEquality independent_functionElimination independent_pairFormation Error :productIsType,  Error :universeIsType,  isectElimination Error :inhabitedIsType

Latex:
\mforall{}a,b,c:\mBbbZ{}.    ((a  \msim{}  b)  {}\mRightarrow{}  (b  \msim{}  c)  {}\mRightarrow{}  (a  \msim{}  c))



Date html generated: 2019_06_20-PM-02_20_59
Last ObjectModification: 2018_10_03-AM-00_35_50

Theory : num_thy_1


Home Index