Nuprl Lemma : coprime-exp
∀a,b:ℤ.  (CoPrime(a,b) 
⇒ (∀n,m:ℕ.  CoPrime(a^m,b^n)))
Proof
Definitions occuring in Statement : 
coprime: CoPrime(a,b)
, 
exp: i^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
coprime-exp1, 
exp_wf2, 
coprime_symmetry, 
nat_wf, 
coprime_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
because_Cache, 
intEquality
Latex:
\mforall{}a,b:\mBbbZ{}.    (CoPrime(a,b)  {}\mRightarrow{}  (\mforall{}n,m:\mBbbN{}.    CoPrime(a\^{}m,b\^{}n)))
Date html generated:
2018_05_21-PM-01_09_55
Last ObjectModification:
2018_01_28-PM-02_03_39
Theory : num_thy_1
Home
Index