Nuprl Lemma : coprime_bezout_id
∀a,b:ℤ.  (CoPrime(a,b) 
⇐⇒ ∃x,y:ℤ. (((a * x) + (b * y)) = 1 ∈ ℤ))
This theorem is one of freek's list of 100 theorems
Proof
Definitions occuring in Statement : 
coprime: CoPrime(a,b)
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
coprime_bezout_id1, 
coprime_wf, 
coprime_bezout_id2, 
int_subtype_base, 
istype-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
Error :universeIsType, 
isectElimination, 
sqequalRule, 
Error :productIsType, 
Error :inhabitedIsType, 
Error :equalityIsType4, 
addEquality, 
multiplyEquality, 
applyEquality, 
natural_numberEquality
Latex:
\mforall{}a,b:\mBbbZ{}.    (CoPrime(a,b)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}x,y:\mBbbZ{}.  (((a  *  x)  +  (b  *  y))  =  1))
Date html generated:
2019_06_20-PM-02_23_40
Last ObjectModification:
2018_10_03-AM-00_12_35
Theory : num_thy_1
Home
Index