Nuprl Lemma : coprime_iff_ndivides

a,p:ℤ.  (prime(p)  (CoPrime(p,a) ⇐⇒ ¬(p a)))


Proof




Definitions occuring in Statement :  prime: prime(a) coprime: CoPrime(a,b) divides: a all: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q int:
Definitions unfolded in proof :  rev_implies:  Q prop: uall: [x:A]. B[x] member: t ∈ T false: False not: ¬A and: P ∧ Q iff: ⇐⇒ Q implies:  Q all: x:A. B[x] prime: prime(a) assoced: b or: P ∨ Q guard: {T}
Lemmas referenced :  istype-int prime_wf not_wf coprime_wf divides_wf coprime_elim divides_reflexivity coprime_intro prime_elim divides_transitivity
Rules used in proof :  Error :inhabitedIsType,  hypothesisEquality isectElimination extract_by_obid introduction Error :universeIsType,  voidElimination independent_functionElimination sqequalHypSubstitution hypothesis thin cut independent_pairFormation Error :lambdaFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution productElimination dependent_functionElimination unionElimination

Latex:
\mforall{}a,p:\mBbbZ{}.    (prime(p)  {}\mRightarrow{}  (CoPrime(p,a)  \mLeftarrow{}{}\mRightarrow{}  \mneg{}(p  |  a)))



Date html generated: 2019_06_20-PM-02_23_31
Last ObjectModification: 2019_01_15-PM-03_02_34

Theory : num_thy_1


Home Index