Nuprl Lemma : coprime_iff_ndivides
∀a,p:ℤ.  (prime(p) ⇒ (CoPrime(p,a) ⇐⇒ ¬(p | a)))
Proof
Definitions occuring in Statement : 
prime: prime(a), 
coprime: CoPrime(a,b), 
divides: b | a, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
not: ¬A, 
implies: P ⇒ Q, 
int: ℤ
Definitions unfolded in proof : 
rev_implies: P ⇐ Q, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
false: False, 
not: ¬A, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
prime: prime(a), 
assoced: a ~ b, 
or: P ∨ Q, 
guard: {T}
Lemmas referenced : 
istype-int, 
prime_wf, 
not_wf, 
coprime_wf, 
divides_wf, 
coprime_elim, 
divides_reflexivity, 
coprime_intro, 
prime_elim, 
divides_transitivity
Rules used in proof : 
Error :inhabitedIsType, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
Error :universeIsType, 
voidElimination, 
independent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
thin, 
cut, 
independent_pairFormation, 
Error :lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
productElimination, 
dependent_functionElimination, 
unionElimination
Latex:
\mforall{}a,p:\mBbbZ{}.    (prime(p)  {}\mRightarrow{}  (CoPrime(p,a)  \mLeftarrow{}{}\mRightarrow{}  \mneg{}(p  |  a)))
Date html generated:
2019_06_20-PM-02_23_31
Last ObjectModification:
2019_01_15-PM-03_02_34
Theory : num_thy_1
Home
Index