Nuprl Lemma : divides_functionality_wrt_assoced

a,a',b,b':ℤ.  ((a a')  (b b')  (a ⇐⇒ a' b'))


Proof




Definitions occuring in Statement :  assoced: b divides: a all: x:A. B[x] iff: ⇐⇒ Q implies:  Q int:
Definitions unfolded in proof :  assoced: b all: x:A. B[x] implies:  Q and: P ∧ Q iff: ⇐⇒ Q member: t ∈ T guard: {T} uall: [x:A]. B[x] prop: rev_implies:  Q
Lemmas referenced :  divides_transitivity divides_wf istype-int
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :lambdaFormation_alt,  sqequalHypSubstitution productElimination thin independent_pairFormation cut hypothesis introduction extract_by_obid dependent_functionElimination hypothesisEquality independent_functionElimination Error :universeIsType,  isectElimination Error :productIsType,  Error :inhabitedIsType

Latex:
\mforall{}a,a',b,b':\mBbbZ{}.    ((a  \msim{}  a')  {}\mRightarrow{}  (b  \msim{}  b')  {}\mRightarrow{}  (a  |  b  \mLeftarrow{}{}\mRightarrow{}  a'  |  b'))



Date html generated: 2019_06_20-PM-02_20_52
Last ObjectModification: 2018_10_03-AM-00_35_50

Theory : num_thy_1


Home Index