Nuprl Lemma : divides_functionality_wrt_assoced
∀a,a',b,b':ℤ.  ((a ~ a') 
⇒ (b ~ b') 
⇒ (a | b 
⇐⇒ a' | b'))
Proof
Definitions occuring in Statement : 
assoced: a ~ b
, 
divides: b | a
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
int: ℤ
Definitions unfolded in proof : 
assoced: a ~ b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
member: t ∈ T
, 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
divides_transitivity, 
divides_wf, 
istype-int
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairFormation, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
Error :universeIsType, 
isectElimination, 
Error :productIsType, 
Error :inhabitedIsType
Latex:
\mforall{}a,a',b,b':\mBbbZ{}.    ((a  \msim{}  a')  {}\mRightarrow{}  (b  \msim{}  b')  {}\mRightarrow{}  (a  |  b  \mLeftarrow{}{}\mRightarrow{}  a'  |  b'))
Date html generated:
2019_06_20-PM-02_20_52
Last ObjectModification:
2018_10_03-AM-00_35_50
Theory : num_thy_1
Home
Index