Nuprl Lemma : fact_unroll

[n:ℤ]. ((n)! if n <then else (n 1)! fi )


Proof




Definitions occuring in Statement :  fact: (n)! ifthenelse: if then else fi  lt_int: i <j uall: [x:A]. B[x] multiply: m subtract: m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fact: (n)! top: Top
Lemmas referenced :  primrec-unroll subtract-add-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality isect_memberEquality voidElimination voidEquality hypothesis natural_numberEquality sqequalAxiom intEquality

Latex:
\mforall{}[n:\mBbbZ{}].  ((n)!  \msim{}  if  n  <z  1  then  1  else  n  *  (n  -  1)!  fi  )



Date html generated: 2018_05_21-PM-01_00_42
Last ObjectModification: 2018_05_19-AM-06_37_25

Theory : num_thy_1


Home Index