Nuprl Lemma : fastexp_wf

[i:ℤ]. ∀[n:ℕ].  (i^n ∈ ℤ)


Proof




Definitions occuring in Statement :  fastexp: i^n nat: uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fastexp: i^n subtype_rel: A ⊆B all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] sq_exists: x:A [B[x]] prop:
Lemmas referenced :  efficient-exp-ext subtype_rel_self all_wf nat_wf sq_exists_wf equal-wf-base-T int_subtype_base exp_wf2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule applyEquality thin instantiate extract_by_obid hypothesis sqequalHypSubstitution isectElimination functionEquality intEquality lambdaEquality hypothesisEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[i:\mBbbZ{}].  \mforall{}[n:\mBbbN{}].    (i\^{}n  \mmember{}  \mBbbZ{})



Date html generated: 2018_05_21-PM-01_07_37
Last ObjectModification: 2018_05_19-AM-06_39_05

Theory : num_thy_1


Home Index