Nuprl Lemma : fastexp_wf
∀[i:ℤ]. ∀[n:ℕ].  (i^n ∈ ℤ)
Proof
Definitions occuring in Statement : 
fastexp: i^n
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fastexp: i^n
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_exists: ∃x:A [B[x]]
, 
prop: ℙ
Lemmas referenced : 
efficient-exp-ext, 
subtype_rel_self, 
all_wf, 
nat_wf, 
sq_exists_wf, 
equal-wf-base-T, 
int_subtype_base, 
exp_wf2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
applyEquality, 
thin, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
functionEquality, 
intEquality, 
lambdaEquality, 
hypothesisEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[i:\mBbbZ{}].  \mforall{}[n:\mBbbN{}].    (i\^{}n  \mmember{}  \mBbbZ{})
Date html generated:
2018_05_21-PM-01_07_37
Last ObjectModification:
2018_05_19-AM-06_39_05
Theory : num_thy_1
Home
Index