Nuprl Lemma : gcd_of_triple

a,b,c,x,y:ℤ.
  (GCD(a;b;x)  GCD(x;c;y)  (((y a) ∧ (y b) ∧ (y c)) ∧ (∀z:ℤ((z a)  (z b)  (z c)  (z y)))))


Proof




Definitions occuring in Statement :  gcd_p: GCD(a;b;y) divides: a all: x:A. B[x] implies:  Q and: P ∧ Q int:
Definitions unfolded in proof :  gcd_p: GCD(a;b;y) all: x:A. B[x] implies:  Q and: P ∧ Q cand: c∧ B member: t ∈ T guard: {T} uall: [x:A]. B[x] prop:
Lemmas referenced :  divides_transitivity divides_wf istype-int
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :lambdaFormation_alt,  sqequalHypSubstitution productElimination thin cut hypothesis introduction extract_by_obid dependent_functionElimination hypothesisEquality independent_functionElimination independent_pairFormation Error :universeIsType,  isectElimination Error :inhabitedIsType,  Error :productIsType,  Error :functionIsType

Latex:
\mforall{}a,b,c,x,y:\mBbbZ{}.
    (GCD(a;b;x)
    {}\mRightarrow{}  GCD(x;c;y)
    {}\mRightarrow{}  (((y  |  a)  \mwedge{}  (y  |  b)  \mwedge{}  (y  |  c))  \mwedge{}  (\mforall{}z:\mBbbZ{}.  ((z  |  a)  {}\mRightarrow{}  (z  |  b)  {}\mRightarrow{}  (z  |  c)  {}\mRightarrow{}  (z  |  y)))))



Date html generated: 2019_06_20-PM-02_21_50
Last ObjectModification: 2018_10_03-AM-00_12_12

Theory : num_thy_1


Home Index