Nuprl Lemma : gcd_p_neg_arg

a,b,y:ℤ.  (GCD(a;b;y)  GCD(a;-b;y))


Proof




Definitions occuring in Statement :  gcd_p: GCD(a;b;y) all: x:A. B[x] implies:  Q minus: -n int:
Definitions unfolded in proof :  prop: uall: [x:A]. B[x] rev_implies:  Q iff: ⇐⇒ Q member: t ∈ T cand: c∧ B and: P ∧ Q implies:  Q all: x:A. B[x] gcd_p: GCD(a;b;y)
Lemmas referenced :  istype-int divides_wf minus-minus divides_invar_2
Rules used in proof :  Error :functionIsType,  Error :inhabitedIsType,  Error :universeIsType,  Error :productIsType,  because_Cache isectElimination independent_functionElimination minusEquality hypothesisEquality dependent_functionElimination extract_by_obid introduction independent_pairFormation hypothesis cut thin productElimination sqequalHypSubstitution Error :lambdaFormation_alt,  computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}a,b,y:\mBbbZ{}.    (GCD(a;b;y)  {}\mRightarrow{}  GCD(a;-b;y))



Date html generated: 2019_06_20-PM-02_21_39
Last ObjectModification: 2019_06_18-PM-10_47_51

Theory : num_thy_1


Home Index