Nuprl Lemma : gcd_p_neg_arg
∀a,b,y:ℤ.  (GCD(a;b;y) 
⇒ GCD(a;-b;y))
Proof
Definitions occuring in Statement : 
gcd_p: GCD(a;b;y)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
minus: -n
, 
int: ℤ
Definitions unfolded in proof : 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
member: t ∈ T
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
gcd_p: GCD(a;b;y)
Lemmas referenced : 
istype-int, 
divides_wf, 
minus-minus, 
divides_invar_2
Rules used in proof : 
Error :functionIsType, 
Error :inhabitedIsType, 
Error :universeIsType, 
Error :productIsType, 
because_Cache, 
isectElimination, 
independent_functionElimination, 
minusEquality, 
hypothesisEquality, 
dependent_functionElimination, 
extract_by_obid, 
introduction, 
independent_pairFormation, 
hypothesis, 
cut, 
thin, 
productElimination, 
sqequalHypSubstitution, 
Error :lambdaFormation_alt, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}a,b,y:\mBbbZ{}.    (GCD(a;b;y)  {}\mRightarrow{}  GCD(a;-b;y))
Date html generated:
2019_06_20-PM-02_21_39
Last ObjectModification:
2019_06_18-PM-10_47_51
Theory : num_thy_1
Home
Index