Nuprl Lemma : gcd_p_zero
∀a:ℤ. GCD(a;0;a)
Proof
Definitions occuring in Statement : 
gcd_p: GCD(a;b;y)
, 
all: ∀x:A. B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
gcd_p: GCD(a;b;y)
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
divides_reflexivity, 
any_divs_zero, 
divides_wf, 
istype-int
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_pairFormation, 
productElimination, 
Error :productIsType, 
Error :universeIsType, 
isectElimination, 
natural_numberEquality, 
Error :inhabitedIsType
Latex:
\mforall{}a:\mBbbZ{}.  GCD(a;0;a)
Date html generated:
2019_06_20-PM-02_21_28
Last ObjectModification:
2018_10_02-PM-11_35_08
Theory : num_thy_1
Home
Index