Nuprl Lemma : gcd_sat_pred
∀a,b:ℤ.  GCD(a;b;gcd(a;b))
Proof
Definitions occuring in Statement : 
gcd_p: GCD(a;b;y)
, 
gcd: gcd(a;b)
, 
all: ∀x:A. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
Lemmas referenced : 
gcd_sat_gcd_p
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
intEquality
Latex:
\mforall{}a,b:\mBbbZ{}.    GCD(a;b;gcd(a;b))
Date html generated:
2016_05_14-PM-04_18_30
Last ObjectModification:
2015_12_26-PM-08_15_48
Theory : num_thy_1
Home
Index