Nuprl Lemma : gcd_sat_pred

a,b:ℤ.  GCD(a;b;gcd(a;b))


Proof




Definitions occuring in Statement :  gcd_p: GCD(a;b;y) gcd: gcd(a;b) all: x:A. B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T
Lemmas referenced :  gcd_sat_gcd_p
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis intEquality

Latex:
\mforall{}a,b:\mBbbZ{}.    GCD(a;b;gcd(a;b))



Date html generated: 2016_05_14-PM-04_18_30
Last ObjectModification: 2015_12_26-PM-08_15_48

Theory : num_thy_1


Home Index