Nuprl Lemma : gcd_unique

a,b,y1,y2:ℤ.  (GCD(a;b;y1)  GCD(a;b;y2)  (y1 y2))


Proof




Definitions occuring in Statement :  gcd_p: GCD(a;b;y) assoced: b all: x:A. B[x] implies:  Q int:
Definitions unfolded in proof :  assoced: b gcd_p: GCD(a;b;y) all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] prop:
Lemmas referenced :  divides_wf istype-int
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :lambdaFormation_alt,  independent_pairFormation cut hypothesis sqequalHypSubstitution productElimination thin dependent_functionElimination hypothesisEquality independent_functionElimination Error :productIsType,  Error :universeIsType,  introduction extract_by_obid isectElimination Error :functionIsType,  Error :inhabitedIsType

Latex:
\mforall{}a,b,y1,y2:\mBbbZ{}.    (GCD(a;b;y1)  {}\mRightarrow{}  GCD(a;b;y2)  {}\mRightarrow{}  (y1  \msim{}  y2))



Date html generated: 2019_06_20-PM-02_21_48
Last ObjectModification: 2018_10_03-AM-00_12_06

Theory : num_thy_1


Home Index