Nuprl Lemma : int_mod_2_isect_int_mod_3
ℤ_2 ⋂ ℤ_3 ≡ ℤ_6
Proof
Definitions occuring in Statement : 
int_mod: ℤ_n, 
isect2: T1 ⋂ T2, 
ext-eq: A ≡ B, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat_plus: ℕ+, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
and: P ∧ Q, 
prop: ℙ, 
lcm: lcm(a;b), 
ifthenelse: if b then t else f fi , 
eq_int: (i =z j), 
bfalse: ff, 
gcd: gcd(a;b), 
btrue: tt
Lemmas referenced : 
less_than_wf, 
int_mod_isect_int_mod
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
introduction, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
hypothesis, 
because_Cache
Latex:
\mBbbZ{}\_2  \mcap{}  \mBbbZ{}\_3  \mequiv{}  \mBbbZ{}\_6
Date html generated:
2016_05_14-PM-09_27_44
Last ObjectModification:
2016_01_14-PM-11_31_17
Theory : num_thy_1
Home
Index