Nuprl Lemma : isqrt_wf
∀[x:ℕ]. (isqrt(x) ∈ ℕ)
Proof
Definitions occuring in Statement : 
isqrt: isqrt(x)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
isqrt: isqrt(x)
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
nat: ℕ
, 
so_apply: x[s]
, 
sq_exists: ∃x:A [B[x]]
, 
implies: P 
⇒ Q
Lemmas referenced : 
nat_wf, 
integer-sqrt-ext, 
subtype_rel_self, 
sq_exists_wf, 
le_wf, 
less_than_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
axiomEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
extract_by_obid, 
applyEquality, 
thin, 
instantiate, 
isectElimination, 
functionEquality, 
lambdaEquality, 
productEquality, 
multiplyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
because_Cache, 
addEquality, 
natural_numberEquality, 
lambdaFormation, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[x:\mBbbN{}].  (isqrt(x)  \mmember{}  \mBbbN{})
Date html generated:
2019_06_20-PM-02_36_45
Last ObjectModification:
2019_06_12-PM-00_25_43
Theory : num_thy_1
Home
Index