Nuprl Lemma : not-poly-choice-eta-2'
¬(∀f:Base. ((∀x,y:Base. ((f x y) = x ∈ Base))
⇒ (f ~ λx,y. x)))
Proof
Definitions occuring in Statement :
all: ∀x:A. B[x]
,
not: ¬A
,
implies: P
⇒ Q
,
apply: f a
,
lambda: λx.A[x]
,
base: Base
,
sqequal: s ~ t
,
equal: s = t ∈ T
Definitions unfolded in proof :
not: ¬A
,
implies: P
⇒ Q
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
prop: ℙ
,
uall: ∀[x:A]. B[x]
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
false: False
Lemmas referenced :
not-poly-choice-eta-2,
all_wf,
base_wf,
equal-wf-base,
sqequal-wf-base
Rules used in proof :
cut,
introduction,
extract_by_obid,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
sqequalHypSubstitution,
independent_functionElimination,
thin,
hypothesis,
dependent_functionElimination,
hypothesisEquality,
sqequalRule,
isectElimination,
lambdaEquality,
baseApply,
closedConclusion,
baseClosed,
voidElimination,
functionEquality
Latex:
\mneg{}(\mforall{}f:Base. ((\mforall{}x,y:Base. ((f x y) = x)) {}\mRightarrow{} (f \msim{} \mlambda{}x,y. x)))
Date html generated:
2018_05_21-PM-01_15_34
Last ObjectModification:
2018_05_02-PM-01_18_57
Theory : num_thy_1
Home
Index