Nuprl Lemma : add_ipoly-sq
∀[p,q:iMonomial() List].  (add_ipoly(p;q) ~ add-ipoly(p;q))
Proof
Definitions occuring in Statement : 
add_ipoly: add_ipoly(p;q)
, 
add-ipoly: add-ipoly(p;q)
, 
iMonomial: iMonomial()
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
add_ipoly: add_ipoly(p;q)
, 
member: t ∈ T
, 
rev-append: rev(as) + bs
, 
all: ∀x:A. B[x]
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
add-poly-prepend-sq, 
nil_wf, 
iMonomial_wf, 
list_accum_nil_lemma, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[p,q:iMonomial()  List].    (add\_ipoly(p;q)  \msim{}  add-ipoly(p;q))
Date html generated:
2017_09_29-PM-05_53_06
Last ObjectModification:
2017_05_04-PM-03_22_19
Theory : omega
Home
Index