Nuprl Lemma : add_ipoly-sq

[p,q:iMonomial() List].  (add_ipoly(p;q) add-ipoly(p;q))


Proof




Definitions occuring in Statement :  add_ipoly: add_ipoly(p;q) add-ipoly: add-ipoly(p;q) iMonomial: iMonomial() list: List uall: [x:A]. B[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] add_ipoly: add_ipoly(p;q) member: t ∈ T rev-append: rev(as) bs all: x:A. B[x] top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  add-poly-prepend-sq nil_wf iMonomial_wf list_accum_nil_lemma list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_functionElimination isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}[p,q:iMonomial()  List].    (add\_ipoly(p;q)  \msim{}  add-ipoly(p;q))



Date html generated: 2017_09_29-PM-05_53_06
Last ObjectModification: 2017_05_04-PM-03_22_19

Theory : omega


Home Index