Nuprl Lemma : const-poly-value

[n,f:Top].  (int_term_value(f;ipolynomial-term(const-poly(n))) n)


Proof




Definitions occuring in Statement :  const-poly: const-poly(n) ipolynomial-term: ipolynomial-term(p) int_term_value: int_term_value(f;t) uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  const-poly: const-poly(n) ipolynomial-term: ipolynomial-term(p) int_term_value: int_term_value(f;t) all: x:A. B[x] member: t ∈ T top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] ifthenelse: if then else fi  bfalse: ff imonomial-term: imonomial-term(m) itermConstant: "const" int_term_ind: int_term_ind uall: [x:A]. B[x]
Lemmas referenced :  null_cons_lemma spread_cons_lemma list_accum_nil_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation introduction sqequalAxiom isectElimination hypothesisEquality because_Cache

Latex:
\mforall{}[n,f:Top].    (int\_term\_value(f;ipolynomial-term(const-poly(n)))  \msim{}  n)



Date html generated: 2016_05_14-AM-07_04_02
Last ObjectModification: 2015_12_26-PM-01_10_53

Theory : omega


Home Index