Nuprl Lemma : const-poly-value
∀[n,f:Top].  (int_term_value(f;ipolynomial-term(const-poly(n))) ~ n)
Proof
Definitions occuring in Statement : 
const-poly: const-poly(n)
, 
ipolynomial-term: ipolynomial-term(p)
, 
int_term_value: int_term_value(f;t)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
const-poly: const-poly(n)
, 
ipolynomial-term: ipolynomial-term(p)
, 
int_term_value: int_term_value(f;t)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
imonomial-term: imonomial-term(m)
, 
itermConstant: "const"
, 
int_term_ind: int_term_ind, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
null_cons_lemma, 
spread_cons_lemma, 
list_accum_nil_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
introduction, 
sqequalAxiom, 
isectElimination, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[n,f:Top].    (int\_term\_value(f;ipolynomial-term(const-poly(n)))  \msim{}  n)
Date html generated:
2016_05_14-AM-07_04_02
Last ObjectModification:
2015_12_26-PM-01_10_53
Theory : omega
Home
Index