Nuprl Lemma : eager_product_map_cons_lemma
∀L,as,a,f:Top.  (eager-product-map(f;[a / as];L) ~ eager-map-append(f a;L;eager-product-map(f;as;L)))
Proof
Definitions occuring in Statement : 
eager-product-map: eager-product-map(f;as;bs)
, 
eager-map-append: eager-map-append(f;as;bs)
, 
cons: [a / b]
, 
top: Top
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
eager-product-map: eager-product-map(f;as;bs)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
top_wf, 
list_ind_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}L,as,a,f:Top.
    (eager-product-map(f;[a  /  as];L)  \msim{}  eager-map-append(f  a;L;eager-product-map(f;as;L)))
Date html generated:
2016_05_14-AM-06_55_43
Last ObjectModification:
2015_12_26-PM-01_15_15
Theory : omega
Home
Index