Nuprl Lemma : eager_product_map_cons_lemma

L,as,a,f:Top.  (eager-product-map(f;[a as];L) eager-map-append(f a;L;eager-product-map(f;as;L)))


Proof




Definitions occuring in Statement :  eager-product-map: eager-product-map(f;as;bs) eager-map-append: eager-map-append(f;as;bs) cons: [a b] top: Top all: x:A. B[x] apply: a sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T eager-product-map: eager-product-map(f;as;bs) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3]
Lemmas referenced :  top_wf list_ind_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}L,as,a,f:Top.
    (eager-product-map(f;[a  /  as];L)  \msim{}  eager-map-append(f  a;L;eager-product-map(f;as;L)))



Date html generated: 2016_05_14-AM-06_55_43
Last ObjectModification: 2015_12_26-PM-01_15_15

Theory : omega


Home Index