Nuprl Lemma : int-vec-mul_wf

[a:ℤ]. ∀[as:ℤ List].  (a as ∈ ℤ List)


Proof




Definitions occuring in Statement :  int-vec-mul: as list: List uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int-vec-mul: as
Lemmas referenced :  map_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality lambdaEquality multiplyEquality hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[as:\mBbbZ{}  List].    (a  *  as  \mmember{}  \mBbbZ{}  List)



Date html generated: 2016_05_14-AM-06_56_28
Last ObjectModification: 2015_12_26-PM-01_14_48

Theory : omega


Home Index