Nuprl Lemma : int-vec-mul_wf
∀[a:ℤ]. ∀[as:ℤ List].  (a * as ∈ ℤ List)
Proof
Definitions occuring in Statement : 
int-vec-mul: a * as
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int-vec-mul: a * as
Lemmas referenced : 
map_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
lambdaEquality, 
multiplyEquality, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[as:\mBbbZ{}  List].    (a  *  as  \mmember{}  \mBbbZ{}  List)
Date html generated:
2016_05_14-AM-06_56_28
Last ObjectModification:
2015_12_26-PM-01_14_48
Theory : omega
Home
Index