Nuprl Lemma : int_dot_cons_lemma
∀bs,b,as,a:Top.  ([a / as] ⋅ [b / bs] ~ (a * b) + as ⋅ bs)
Proof
Definitions occuring in Statement : 
integer-dot-product: as ⋅ bs
, 
cons: [a / b]
, 
top: Top
, 
all: ∀x:A. B[x]
, 
multiply: n * m
, 
add: n + m
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
integer-dot-product: as ⋅ bs
, 
cons: [a / b]
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
so_apply: x[s1;s2]
Lemmas referenced : 
top_wf, 
spread_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}bs,b,as,a:Top.    ([a  /  as]  \mcdot{}  [b  /  bs]  \msim{}  (a  *  b)  +  as  \mcdot{}  bs)
Date html generated:
2016_05_14-AM-06_56_09
Last ObjectModification:
2015_12_26-PM-01_14_59
Theory : omega
Home
Index