Nuprl Lemma : int_formula_prop_wf

[f:ℤ ⟶ ℤ]. ∀[fmla:int_formula()].  (int_formula_prop(f;fmla) ∈ ℙ)


Proof




Definitions occuring in Statement :  int_formula_prop: int_formula_prop(f;fmla) int_formula: int_formula() uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_formula_prop: int_formula_prop(f;fmla) prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) and: P ∧ Q so_apply: x[s1;s2;s3;s4] implies:  Q
Lemmas referenced :  int_formula_ind_wf_simple less_than_wf int_term_value_wf int_term_wf le_wf equal_wf int_formula_wf or_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination universeEquality hypothesisEquality lambdaEquality hypothesis because_Cache intEquality productEquality cumulativity functionEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[fmla:int\_formula()].    (int\_formula\_prop(f;fmla)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-AM-07_07_17
Last ObjectModification: 2015_12_26-PM-01_08_53

Theory : omega


Home Index