Nuprl Lemma : int_formula_prop_wf
∀[f:ℤ ⟶ ℤ]. ∀[fmla:int_formula()].  (int_formula_prop(f;fmla) ∈ ℙ)
Proof
Definitions occuring in Statement : 
int_formula_prop: int_formula_prop(f;fmla)
, 
int_formula: int_formula()
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_formula_prop: int_formula_prop(f;fmla)
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
and: P ∧ Q
, 
so_apply: x[s1;s2;s3;s4]
, 
implies: P 
⇒ Q
Lemmas referenced : 
int_formula_ind_wf_simple, 
less_than_wf, 
int_term_value_wf, 
int_term_wf, 
le_wf, 
equal_wf, 
int_formula_wf, 
or_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
universeEquality, 
hypothesisEquality, 
lambdaEquality, 
hypothesis, 
because_Cache, 
intEquality, 
productEquality, 
cumulativity, 
functionEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[fmla:int\_formula()].    (int\_formula\_prop(f;fmla)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_14-AM-07_07_17
Last ObjectModification:
2015_12_26-PM-01_08_53
Theory : omega
Home
Index