Nuprl Definition : int_term_to_ipoly

int_term_to_ipoly(t) ==
  int_term_ind(t;
               itermConstant(c) if c=0  then []  else [<c, []>];
               itermVar(v) [<1, [v]>];
               itermAdd(l,r) rl,rr.add_ipoly(rl;rr);
               itermSubtract(l,r) rl,rr.add_ipoly(rl;minus-poly(rr));
               itermMultiply(l,r) rl,rr.mul_ipoly(rl;rr);
               itermMinus(x) rx.minus-poly(rx)) 



Definitions occuring in Statement :  mul_ipoly: mul_ipoly(p;q) minus-poly: minus-poly(p) add_ipoly: add_ipoly(p;q) int_term_ind: int_term_ind cons: [a b] nil: [] int_eq: if a=b  then c  else d pair: <a, b> natural_number: $n
Definitions occuring in definition :  int_term_ind: int_term_ind int_eq: if a=b  then c  else d pair: <a, b> natural_number: $n cons: [a b] nil: [] add_ipoly: add_ipoly(p;q) mul_ipoly: mul_ipoly(p;q) minus-poly: minus-poly(p)
FDL editor aliases :  int_term_to_ipoly

Latex:
int\_term\_to\_ipoly(t)  ==
    int\_term\_ind(t;
                              itermConstant(c){}\mRightarrow{}  if  c=0    then  []    else  [<c,  []>];
                              itermVar(v){}\mRightarrow{}  [ə,  [v]>];
                              itermAdd(l,r){}\mRightarrow{}  rl,rr.add\_ipoly(rl;rr);
                              itermSubtract(l,r){}\mRightarrow{}  rl,rr.add\_ipoly(rl;minus-poly(rr));
                              itermMultiply(l,r){}\mRightarrow{}  rl,rr.mul\_ipoly(rl;rr);
                              itermMinus(x){}\mRightarrow{}  rx.minus-poly(rx)) 



Date html generated: 2017_09_29-PM-05_54_33
Last ObjectModification: 2017_05_04-PM-05_51_52

Theory : omega


Home Index