Nuprl Lemma : map-id-map
∀[as,f:Top].  (map(λx.x;map(f;as)) ~ map(f;as))
Proof
Definitions occuring in Statement : 
map: map(f;as)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
lambda: λx.A[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
top: Top
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
map: map(f;as)
, 
compose: f o g
Lemmas referenced : 
map-map, 
top_wf
Rules used in proof : 
because_Cache, 
axiomSqEquality, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[as,f:Top].    (map(\mlambda{}x.x;map(f;as))  \msim{}  map(f;as))
Date html generated:
2019_06_20-PM-00_44_39
Last ObjectModification:
2019_01_11-AM-09_42_46
Theory : omega
Home
Index