Nuprl Lemma : map-id-map

[as,f:Top].  (map(λx.x;map(f;as)) map(f;as))


Proof




Definitions occuring in Statement :  map: map(f;as) uall: [x:A]. B[x] top: Top lambda: λx.A[x] sqequal: t
Definitions unfolded in proof :  top: Top member: t ∈ T uall: [x:A]. B[x] map: map(f;as) compose: g
Lemmas referenced :  map-map top_wf
Rules used in proof :  because_Cache axiomSqEquality hypothesis voidEquality voidElimination isect_memberEquality hypothesisEquality thin isectElimination sqequalHypSubstitution lemma_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[as,f:Top].    (map(\mlambda{}x.x;map(f;as))  \msim{}  map(f;as))



Date html generated: 2019_06_20-PM-00_44_39
Last ObjectModification: 2019_01_11-AM-09_42_46

Theory : omega


Home Index