Nuprl Lemma : base-partial-not-exception
∀[T:Type]. ∀[x:base-partial(T)].  (¬is-exception(x))
Proof
Definitions occuring in Statement : 
base-partial: base-partial(T), 
is-exception: is-exception(t), 
uall: ∀[x:A]. B[x], 
not: ¬A, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
base-partial: base-partial(T), 
and: P ∧ Q, 
prop: ℙ
Lemmas referenced : 
is-exception_wf, 
base-partial_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
setElimination, 
rename, 
productElimination, 
hypothesis, 
independent_functionElimination, 
voidElimination, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[x:base-partial(T)].    (\mneg{}is-exception(x))
Date html generated:
2016_05_14-AM-06_09_20
Last ObjectModification:
2015_12_26-AM-11_52_27
Theory : partial_1
Home
Index