Nuprl Lemma : fun-equiv_wf

[X,A:Type]. ∀[E:A ⟶ A ⟶ ℙ]. ∀[f,g:X ⟶ A].  (fun-equiv(X;a,b.E[a;b];f;g) ∈ ℙ)


Proof




Definitions occuring in Statement :  fun-equiv: fun-equiv(X;a,b.E[a; b];f;g) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fun-equiv: fun-equiv(X;a,b.E[a; b];f;g) so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s] prop:
Lemmas referenced :  all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality because_Cache cumulativity universeEquality

Latex:
\mforall{}[X,A:Type].  \mforall{}[E:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[f,g:X  {}\mrightarrow{}  A].    (fun-equiv(X;a,b.E[a;b];f;g)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-AM-06_09_08
Last ObjectModification: 2015_12_26-AM-11_48_12

Theory : quot_1


Home Index