Nuprl Lemma : fun-equiv_wf
∀[X,A:Type]. ∀[E:A ⟶ A ⟶ ℙ]. ∀[f,g:X ⟶ A].  (fun-equiv(X;a,b.E[a;b];f;g) ∈ ℙ)
Proof
Definitions occuring in Statement : 
fun-equiv: fun-equiv(X;a,b.E[a; b];f;g)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fun-equiv: fun-equiv(X;a,b.E[a; b];f;g)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
because_Cache, 
cumulativity, 
universeEquality
Latex:
\mforall{}[X,A:Type].  \mforall{}[E:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[f,g:X  {}\mrightarrow{}  A].    (fun-equiv(X;a,b.E[a;b];f;g)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_14-AM-06_09_08
Last ObjectModification:
2015_12_26-AM-11_48_12
Theory : quot_1
Home
Index