Nuprl Lemma : preima_of_equiv_rel
∀A,B:Type. ∀f:A ⟶ B. ∀R:B ⟶ B ⟶ ℙ.  (EquivRel(B;x,y.x R y) 
⇒ EquivRel(A;x,y.x R_f y))
Proof
Definitions occuring in Statement : 
preima_of_rel: R_f
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
prop: ℙ
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
preima_of_rel: R_f
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
trans: Trans(T;x,y.E[x; y])
, 
sym: Sym(T;x,y.E[x; y])
, 
refl: Refl(T;x,y.E[x; y])
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
Lemmas referenced : 
subtype_rel_self, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
Error :universeIsType, 
hypothesisEquality, 
independent_pairFormation, 
hypothesis, 
applyEquality, 
instantiate, 
introduction, 
extract_by_obid, 
isectElimination, 
universeEquality, 
because_Cache, 
Error :productIsType, 
Error :functionIsType, 
Error :inhabitedIsType, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}A,B:Type.  \mforall{}f:A  {}\mrightarrow{}  B.  \mforall{}R:B  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}.    (EquivRel(B;x,y.x  R  y)  {}\mRightarrow{}  EquivRel(A;x,y.x  R\_f  y))
Date html generated:
2019_06_20-PM-00_33_11
Last ObjectModification:
2019_01_17-PM-00_44_38
Theory : quot_1
Home
Index