Nuprl Lemma : preima_of_equiv_rel

A,B:Type. ∀f:A ⟶ B. ∀R:B ⟶ B ⟶ ℙ.  (EquivRel(B;x,y.x y)  EquivRel(A;x,y.x R_f y))


Proof




Definitions occuring in Statement :  preima_of_rel: R_f equiv_rel: EquivRel(T;x,y.E[x; y]) prop: infix_ap: y all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  preima_of_rel: R_f equiv_rel: EquivRel(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) infix_ap: y all: x:A. B[x] implies:  Q and: P ∧ Q cand: c∧ B member: t ∈ T subtype_rel: A ⊆B prop: uall: [x:A]. B[x] guard: {T}
Lemmas referenced :  subtype_rel_self istype-universe
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :lambdaFormation_alt,  sqequalHypSubstitution productElimination thin cut Error :universeIsType,  hypothesisEquality independent_pairFormation hypothesis applyEquality instantiate introduction extract_by_obid isectElimination universeEquality because_Cache Error :productIsType,  Error :functionIsType,  Error :inhabitedIsType,  dependent_functionElimination independent_functionElimination

Latex:
\mforall{}A,B:Type.  \mforall{}f:A  {}\mrightarrow{}  B.  \mforall{}R:B  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}.    (EquivRel(B;x,y.x  R  y)  {}\mRightarrow{}  EquivRel(A;x,y.x  R\_f  y))



Date html generated: 2019_06_20-PM-00_33_11
Last ObjectModification: 2019_01_17-PM-00_44_38

Theory : quot_1


Home Index