Nuprl Lemma : preima_of_rel_wf

A,B:Type. ∀f:A ⟶ B. ∀R:B ⟶ B ⟶ ℙ.  (R_f ∈ A ⟶ A ⟶ ℙ)


Proof




Definitions occuring in Statement :  preima_of_rel: R_f prop: all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T preima_of_rel: R_f infix_ap: y prop:
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule lambdaEquality applyEquality functionExtensionality hypothesisEquality cumulativity sqequalHypSubstitution hypothesis functionEquality universeEquality

Latex:
\mforall{}A,B:Type.  \mforall{}f:A  {}\mrightarrow{}  B.  \mforall{}R:B  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}.    (R\_f  \mmember{}  A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2016_10_21-AM-09_44_07
Last ObjectModification: 2016_08_08-PM-09_03_12

Theory : quot_1


Home Index