Nuprl Lemma : preima_of_rel_wf
∀A,B:Type. ∀f:A ⟶ B. ∀R:B ⟶ B ⟶ ℙ.  (R_f ∈ A ⟶ A ⟶ ℙ)
Proof
Definitions occuring in Statement : 
preima_of_rel: R_f
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
preima_of_rel: R_f
, 
infix_ap: x f y
, 
prop: ℙ
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
cumulativity, 
sqequalHypSubstitution, 
hypothesis, 
functionEquality, 
universeEquality
Latex:
\mforall{}A,B:Type.  \mforall{}f:A  {}\mrightarrow{}  B.  \mforall{}R:B  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}.    (R\_f  \mmember{}  A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{})
Date html generated:
2016_10_21-AM-09_44_07
Last ObjectModification:
2016_08_08-PM-09_03_12
Theory : quot_1
Home
Index