Nuprl Lemma : equiv_rel_and

[T:Type]. ∀[E1,E2:T ⟶ T ⟶ ℙ].
  (EquivRel(T;x,y.E2[x;y])  EquivRel(T;x,y.E1[x;y])  EquivRel(T;x,y.E1[x;y] ∧ E2[x;y]))


Proof




Definitions occuring in Statement :  equiv_rel: EquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q equiv_rel: EquivRel(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) and: P ∧ Q cand: c∧ B all: x:A. B[x] member: t ∈ T prop: so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] guard: {T}
Lemmas referenced :  and_wf equiv_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut independent_pairFormation hypothesis hypothesisEquality lemma_by_obid isectElimination applyEquality because_Cache sqequalRule lambdaEquality functionEquality cumulativity universeEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[E1,E2:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (EquivRel(T;x,y.E2[x;y])  {}\mRightarrow{}  EquivRel(T;x,y.E1[x;y])  {}\mRightarrow{}  EquivRel(T;x,y.E1[x;y]  \mwedge{}  E2[x;y]))



Date html generated: 2016_05_13-PM-04_14_57
Last ObjectModification: 2015_12_26-AM-11_30_09

Theory : rel_1


Home Index