Nuprl Lemma : equiv_rel_and
∀[T:Type]. ∀[E1,E2:T ⟶ T ⟶ ℙ].
  (EquivRel(T;x,y.E2[x;y]) 
⇒ EquivRel(T;x,y.E1[x;y]) 
⇒ EquivRel(T;x,y.E1[x;y] ∧ E2[x;y]))
Proof
Definitions occuring in Statement : 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
trans: Trans(T;x,y.E[x; y])
, 
sym: Sym(T;x,y.E[x; y])
, 
refl: Refl(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
guard: {T}
Lemmas referenced : 
and_wf, 
equiv_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
independent_pairFormation, 
hypothesis, 
hypothesisEquality, 
lemma_by_obid, 
isectElimination, 
applyEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[E1,E2:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (EquivRel(T;x,y.E2[x;y])  {}\mRightarrow{}  EquivRel(T;x,y.E1[x;y])  {}\mRightarrow{}  EquivRel(T;x,y.E1[x;y]  \mwedge{}  E2[x;y]))
Date html generated:
2016_05_13-PM-04_14_57
Last ObjectModification:
2015_12_26-AM-11_30_09
Theory : rel_1
Home
Index