Nuprl Lemma : equiv_rel_iff

EquivRel(ℙ;A,B.A ⇐⇒ B)


Proof




Definitions occuring in Statement :  equiv_rel: EquivRel(T;x,y.E[x; y]) prop: iff: ⇐⇒ Q
Definitions unfolded in proof :  equiv_rel: EquivRel(T;x,y.E[x; y]) prop: member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q trans: Trans(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) all: x:A. B[x]
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :universeIsType,  sqequalHypSubstitution hypothesisEquality universeEquality cut hypothesis productElimination thin independent_functionElimination because_Cache sqequalRule Error :productIsType,  Error :functionIsType,  Error :inhabitedIsType,  independent_pairFormation Error :lambdaFormation_alt

Latex:
EquivRel(\mBbbP{};A,B.A  \mLeftarrow{}{}\mRightarrow{}  B)



Date html generated: 2019_06_20-PM-00_29_01
Last ObjectModification: 2018_09_29-PM-11_16_38

Theory : rel_1


Home Index