Nuprl Lemma : equiv_rel_squash

[T:Type]. ∀[E:T ⟶ T ⟶ ℙ].  (EquivRel(T;x,y.E[x;y])  EquivRel(T;x,y.↓E[x;y]))


Proof




Definitions occuring in Statement :  equiv_rel: EquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] squash: T implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] squash: T prop: equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] sym: Sym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y])
Lemmas referenced :  equiv_rel_squash2 equiv_rel_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut Error :lambdaFormation_alt,  extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule Error :lambdaEquality_alt,  applyEquality Error :inhabitedIsType,  Error :universeIsType,  independent_functionElimination hypothesis imageMemberEquality baseClosed dependent_functionElimination productElimination independent_pairEquality imageElimination Error :functionIsTypeImplies,  Error :functionIsType,  because_Cache universeEquality Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  instantiate

Latex:
\mforall{}[T:Type].  \mforall{}[E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (EquivRel(T;x,y.E[x;y])  {}\mRightarrow{}  EquivRel(T;x,y.\mdownarrow{}E[x;y]))



Date html generated: 2019_06_20-PM-00_28_51
Last ObjectModification: 2019_03_18-PM-07_10_11

Theory : rel_1


Home Index