Nuprl Lemma : equiv_rel_true

[T:Type]. EquivRel(T;x,y.True)


Proof




Definitions occuring in Statement :  equiv_rel: EquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x] true: True universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] true: True cand: c∧ B sym: Sym(T;x,y.E[x; y]) implies:  Q prop: trans: Trans(T;x,y.E[x; y])
Lemmas referenced :  true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation natural_numberEquality hypothesisEquality lemma_by_obid hypothesis because_Cache sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  EquivRel(T;x,y.True)



Date html generated: 2016_05_13-PM-04_14_58
Last ObjectModification: 2015_12_26-AM-11_30_06

Theory : rel_1


Home Index