Nuprl Lemma : equiv_rel_true
∀[T:Type]. EquivRel(T;x,y.True)
Proof
Definitions occuring in Statement : 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
true: True
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
refl: Refl(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
true: True
, 
cand: A c∧ B
, 
sym: Sym(T;x,y.E[x; y])
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
trans: Trans(T;x,y.E[x; y])
Lemmas referenced : 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
natural_numberEquality, 
hypothesisEquality, 
lemma_by_obid, 
hypothesis, 
because_Cache, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  EquivRel(T;x,y.True)
Date html generated:
2016_05_13-PM-04_14_58
Last ObjectModification:
2015_12_26-AM-11_30_06
Theory : rel_1
Home
Index