Nuprl Lemma : equiv_rel_true
∀[T:Type]. EquivRel(T;x,y.True)
Proof
Definitions occuring in Statement :
equiv_rel: EquivRel(T;x,y.E[x; y])
,
uall: ∀[x:A]. B[x]
,
true: True
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
equiv_rel: EquivRel(T;x,y.E[x; y])
,
and: P ∧ Q
,
refl: Refl(T;x,y.E[x; y])
,
all: ∀x:A. B[x]
,
true: True
,
cand: A c∧ B
,
sym: Sym(T;x,y.E[x; y])
,
implies: P
⇒ Q
,
prop: ℙ
,
trans: Trans(T;x,y.E[x; y])
Lemmas referenced :
true_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
independent_pairFormation,
lambdaFormation,
natural_numberEquality,
hypothesisEquality,
lemma_by_obid,
hypothesis,
because_Cache,
sqequalRule,
sqequalHypSubstitution,
productElimination,
thin,
independent_pairEquality,
lambdaEquality,
dependent_functionElimination,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
universeEquality
Latex:
\mforall{}[T:Type]. EquivRel(T;x,y.True)
Date html generated:
2016_05_13-PM-04_14_58
Last ObjectModification:
2015_12_26-AM-11_30_06
Theory : rel_1
Home
Index