Nuprl Lemma : greatest-lower-bound_wf

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[a,b,c:T].  (greatest-lower-bound(T;x,y.R[x;y];a;b;c) ∈ ℙ)


Proof




Definitions occuring in Statement :  greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c) so_apply: x[s1;s2] so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s]
Lemmas referenced :  and_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality lambdaEquality functionEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[a,b,c:T].    (greatest-lower-bound(T;x,y.R[x;y];a;b;c)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_13-PM-04_18_25
Last ObjectModification: 2015_12_26-AM-11_27_43

Theory : rel_1


Home Index