Nuprl Lemma : least-upper-bound_wf
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[a,b,c:T].  (least-upper-bound(T;x,y.R[x;y];a;b;c) ∈ ℙ)
Proof
Definitions occuring in Statement : 
least-upper-bound: least-upper-bound(T;x,y.R[x; y];a;b;c)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
least-upper-bound: least-upper-bound(T;x,y.R[x; y];a;b;c)
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
and_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
lambdaEquality, 
functionEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
cumulativity, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[a,b,c:T].    (least-upper-bound(T;x,y.R[x;y];a;b;c)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_13-PM-04_18_09
Last ObjectModification:
2015_12_26-AM-11_27_39
Theory : rel_1
Home
Index