Nuprl Lemma : sq_stable__connex

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ((∀x,y:T.  Dec(R[x;y]))  SqStable(Connex(T;x,y.R[x;y])))


Proof




Definitions occuring in Statement :  connex: Connex(T;x,y.R[x; y]) sq_stable: SqStable(P) decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  connex: Connex(T;x,y.R[x; y]) uall: [x:A]. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] prop:
Lemmas referenced :  sq_stable__all all_wf or_wf sq_stable_from_decidable decidable__or decidable_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis independent_functionElimination because_Cache dependent_functionElimination Error :functionIsType,  Error :universeIsType,  Error :inhabitedIsType,  universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x,y:T.    Dec(R[x;y]))  {}\mRightarrow{}  SqStable(Connex(T;x,y.R[x;y])))



Date html generated: 2019_06_20-PM-00_29_44
Last ObjectModification: 2018_09_26-AM-11_51_41

Theory : rel_1


Home Index