Nuprl Lemma : sq_stable__uconnex

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ((∀[x,y:T].  Dec(R[x;y]))  SqStable(uconnex(T; x,y.R[x;y])))


Proof




Definitions occuring in Statement :  uconnex: uconnex(T; x,y.R[x; y]) sq_stable: SqStable(P) decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uconnex: uconnex(T; x,y.R[x; y]) uall: [x:A]. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s] prop:
Lemmas referenced :  sq_stable__uall uall_wf or_wf sq_stable_from_decidable decidable__or decidable_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis independent_functionElimination because_Cache Error :inhabitedIsType,  Error :universeIsType,  Error :functionIsType,  universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}[x,y:T].    Dec(R[x;y]))  {}\mRightarrow{}  SqStable(uconnex(T;  x,y.R[x;y])))



Date html generated: 2019_06_20-PM-00_29_50
Last ObjectModification: 2018_09_26-AM-11_51_42

Theory : rel_1


Home Index