Nuprl Lemma : sq_stable__urefl
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ((∀[x,y:T].  SqStable(R[x;y])) 
⇒ SqStable(UniformlyRefl(T;x,y.R[x;y])))
Proof
Definitions occuring in Statement : 
urefl: UniformlyRefl(T;x,y.E[x; y])
, 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
urefl: UniformlyRefl(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
sq_stable__uall, 
uall_wf, 
sq_stable_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
independent_functionElimination, 
hypothesis, 
because_Cache, 
Error :universeIsType, 
Error :functionIsType, 
Error :inhabitedIsType, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}[x,y:T].    SqStable(R[x;y]))  {}\mRightarrow{}  SqStable(UniformlyRefl(T;x,y.R[x;y])))
Date html generated:
2019_06_20-PM-00_29_43
Last ObjectModification:
2018_09_26-AM-11_51_40
Theory : rel_1
Home
Index