Nuprl Lemma : st_anti_sym_wf
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (StAntiSym(T;x,y.R[x;y]) ∈ ℙ)
Proof
Definitions occuring in Statement : 
st_anti_sym: StAntiSym(T;x,y.R[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
st_anti_sym: StAntiSym(T;x,y.R[x; y])
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
not_wf, 
subtype_rel_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
productEquality, 
applyEquality, 
hypothesis, 
instantiate, 
universeEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :functionIsType, 
Error :universeIsType, 
Error :inhabitedIsType, 
isect_memberEquality, 
functionEquality, 
cumulativity
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (StAntiSym(T;x,y.R[x;y])  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-PM-00_29_15
Last ObjectModification:
2018_09_26-AM-11_46_42
Theory : rel_1
Home
Index