Nuprl Lemma : st_anti_sym_wf

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (StAntiSym(T;x,y.R[x;y]) ∈ ℙ)


Proof




Definitions occuring in Statement :  st_anti_sym: StAntiSym(T;x,y.R[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T st_anti_sym: StAntiSym(T;x,y.R[x; y]) so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s1;s2] subtype_rel: A ⊆B so_apply: x[s]
Lemmas referenced :  all_wf not_wf subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality productEquality applyEquality hypothesis instantiate universeEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry Error :functionIsType,  Error :universeIsType,  Error :inhabitedIsType,  isect_memberEquality functionEquality cumulativity

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (StAntiSym(T;x,y.R[x;y])  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-00_29_15
Last ObjectModification: 2018_09_26-AM-11_46_42

Theory : rel_1


Home Index