Nuprl Lemma : sym_functionality_wrt_iff

[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].  ((∀x,y:T.  (R[x;y] ⇐⇒ R'[x;y]))  (Sym(T;x,y.R[x;y]) ⇐⇒ Sym(T;x,y.R'[x;y])))


Proof




Definitions occuring in Statement :  sym: Sym(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  sym: Sym(T;x,y.E[x; y]) uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q all: x:A. B[x] member: t ∈ T prop: so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q guard: {T}
Lemmas referenced :  all_wf iff_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation independent_pairFormation cut hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination independent_functionElimination applyEquality lemma_by_obid isectElimination lambdaEquality functionEquality cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R,R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x,y:T.    (R[x;y]  \mLeftarrow{}{}\mRightarrow{}  R'[x;y]))  {}\mRightarrow{}  (Sym(T;x,y.R[x;y])  \mLeftarrow{}{}\mRightarrow{}  Sym(T;x,y.R'[x;y])))



Date html generated: 2016_05_13-PM-04_14_43
Last ObjectModification: 2015_12_26-AM-11_30_16

Theory : rel_1


Home Index