Nuprl Lemma : symmetrize_wf

[T:𝕌{j}]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[a,b:T].  (Symmetrize(x,y.R[x;y];a;b) ∈ ℙ)


Proof




Definitions occuring in Statement :  symmetrize: Symmetrize(x,y.R[x; y];a;b) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T symmetrize: Symmetrize(x,y.R[x; y];a;b) prop: and: P ∧ Q so_apply: x[s1;s2] subtype_rel: A ⊆B
Lemmas referenced :  subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule productEquality applyEquality hypothesisEquality hypothesis thin instantiate extract_by_obid sqequalHypSubstitution isectElimination universeEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  isect_memberEquality Error :universeIsType,  Error :functionIsType,  functionEquality cumulativity

Latex:
\mforall{}[T:\mBbbU{}\{j\}].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[a,b:T].    (Symmetrize(x,y.R[x;y];a;b)  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-00_28_56
Last ObjectModification: 2018_09_26-AM-11_46_39

Theory : rel_1


Home Index