Nuprl Lemma : symmetrized_preorder

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (Preorder(T;x,y.R[x;y])  EquivRel(T;a,b.Symmetrize(x,y.R[x;y];a;b)))


Proof




Definitions occuring in Statement :  symmetrize: Symmetrize(x,y.R[x; y];a;b) preorder: Preorder(T;x,y.R[x; y]) equiv_rel: EquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  symmetrize: Symmetrize(x,y.R[x; y];a;b) equiv_rel: EquivRel(T;x,y.E[x; y]) preorder: Preorder(T;x,y.R[x; y]) uall: [x:A]. B[x] implies:  Q and: P ∧ Q cand: c∧ B member: t ∈ T prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] sym: Sym(T;x,y.E[x; y]) subtype_rel: A ⊆B trans: Trans(T;x,y.E[x; y]) guard: {T}
Lemmas referenced :  refl_wf trans_wf subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut independent_pairFormation hypothesis productEquality introduction extract_by_obid isectElimination hypothesisEquality lambdaEquality applyEquality functionEquality cumulativity universeEquality dependent_functionElimination instantiate because_Cache independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (Preorder(T;x,y.R[x;y])  {}\mRightarrow{}  EquivRel(T;a,b.Symmetrize(x,y.R[x;y];a;b)))



Date html generated: 2019_06_20-PM-00_28_58
Last ObjectModification: 2018_08_25-PM-10_14_33

Theory : rel_1


Home Index