Nuprl Lemma : uconnex_functionality_wrt_implies

[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].
  ((∀[x,y:T].  {R[x;y]  R'[x;y]})  {uconnex(T; x,y.R[x;y])  uconnex(T; x,y.R'[x;y])})


Proof




Definitions occuring in Statement :  uconnex: uconnex(T; x,y.R[x; y]) uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s1;s2] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uconnex: uconnex(T; x,y.R[x; y]) guard: {T} uall: [x:A]. B[x] implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s] or: P ∨ Q
Lemmas referenced :  uall_wf or_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation hypothesisEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity lambdaEquality applyEquality functionExtensionality hypothesis functionEquality universeEquality unionElimination independent_functionElimination inlFormation inrFormation

Latex:
\mforall{}[T:Type].  \mforall{}[R,R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}[x,y:T].    \{R[x;y]  {}\mRightarrow{}  R'[x;y]\})  {}\mRightarrow{}  \{uconnex(T;  x,y.R[x;y])  {}\mRightarrow{}  uconnex(T;  x,y.R'[x;y])\})



Date html generated: 2016_10_21-AM-09_42_25
Last ObjectModification: 2016_08_01-PM-09_49_09

Theory : rel_1


Home Index