Nuprl Lemma : uconnex_functionality_wrt_implies
∀[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].
  ((∀[x,y:T].  {R[x;y] 
⇒ R'[x;y]}) 
⇒ {uconnex(T; x,y.R[x;y]) 
⇒ uconnex(T; x,y.R'[x;y])})
Proof
Definitions occuring in Statement : 
uconnex: uconnex(T; x,y.R[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uconnex: uconnex(T; x,y.R[x; y])
, 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
or: P ∨ Q
Lemmas referenced : 
uall_wf, 
or_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
hypothesis, 
functionEquality, 
universeEquality, 
unionElimination, 
independent_functionElimination, 
inlFormation, 
inrFormation
Latex:
\mforall{}[T:Type].  \mforall{}[R,R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}[x,y:T].    \{R[x;y]  {}\mRightarrow{}  R'[x;y]\})  {}\mRightarrow{}  \{uconnex(T;  x,y.R[x;y])  {}\mRightarrow{}  uconnex(T;  x,y.R'[x;y])\})
Date html generated:
2016_10_21-AM-09_42_25
Last ObjectModification:
2016_08_01-PM-09_49_09
Theory : rel_1
Home
Index