Nuprl Lemma : uequiv_rel_iff

UniformEquivRel(ℙ;A,B.A ⇐⇒ B)


Proof




Definitions occuring in Statement :  uequiv_rel: UniformEquivRel(T;x,y.E[x; y]) prop: iff: ⇐⇒ Q
Definitions unfolded in proof :  uequiv_rel: UniformEquivRel(T;x,y.E[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) usym: UniformlySym(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) and: P ∧ Q cand: c∧ B uall: [x:A]. B[x] iff: ⇐⇒ Q implies:  Q member: t ∈ T prop: rev_implies:  Q
Lemmas referenced :  iff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut Error :isect_memberFormation_alt,  independent_pairFormation lambdaFormation hypothesis hypothesisEquality because_Cache Error :universeIsType,  universeEquality sqequalHypSubstitution productElimination thin independent_functionElimination introduction extract_by_obid isectElimination Error :inhabitedIsType

Latex:
UniformEquivRel(\mBbbP{};A,B.A  \mLeftarrow{}{}\mRightarrow{}  B)



Date html generated: 2019_06_20-PM-00_29_03
Last ObjectModification: 2018_09_26-AM-11_56_04

Theory : rel_1


Home Index