Nuprl Lemma : uequiv_rel_subtyping
∀[T:Type]. ∀[R:T ⟶ T ⟶ Type]. ∀[Q:T ⟶ ℙ].  (UniformEquivRel(T;x,y.R[x;y]) 
⇒ UniformEquivRel({z:T| Q[z]} x,y.R[x;y])\000C)
Proof
Definitions occuring in Statement : 
uequiv_rel: UniformEquivRel(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uequiv_rel: UniformEquivRel(T;x,y.E[x; y])
, 
utrans: UniformlyTrans(T;x,y.E[x; y])
, 
usym: UniformlySym(T;x,y.E[x; y])
, 
urefl: UniformlyRefl(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s1;s2]
, 
guard: {T}
Lemmas referenced : 
set_wf, 
uall_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
hypothesis, 
universeEquality, 
independent_pairFormation, 
setElimination, 
rename, 
because_Cache, 
productEquality, 
functionEquality, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  Type].  \mforall{}[Q:T  {}\mrightarrow{}  \mBbbP{}].
    (UniformEquivRel(T;x,y.R[x;y])  {}\mRightarrow{}  UniformEquivRel(\{z:T|  Q[z]\}  ;x,y.R[x;y]))
Date html generated:
2016_10_21-AM-09_41_58
Last ObjectModification:
2016_08_01-PM-09_49_24
Theory : rel_1
Home
Index