Nuprl Lemma : uequiv_rel_subtyping

[T:Type]. ∀[R:T ⟶ T ⟶ Type]. ∀[Q:T ⟶ ℙ].  (UniformEquivRel(T;x,y.R[x;y])  UniformEquivRel({z:T| Q[z]} ;x,y.R[x;y])\000C)


Proof




Definitions occuring in Statement :  uequiv_rel: UniformEquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] so_apply: x[s] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uequiv_rel: UniformEquivRel(T;x,y.E[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) usym: UniformlySym(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) uall: [x:A]. B[x] implies:  Q and: P ∧ Q cand: c∧ B member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B so_apply: x[s1;s2] guard: {T}
Lemmas referenced :  set_wf uall_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination cumulativity hypothesisEquality lambdaEquality applyEquality functionExtensionality hypothesis universeEquality independent_pairFormation setElimination rename because_Cache productEquality functionEquality independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  Type].  \mforall{}[Q:T  {}\mrightarrow{}  \mBbbP{}].
    (UniformEquivRel(T;x,y.R[x;y])  {}\mRightarrow{}  UniformEquivRel(\{z:T|  Q[z]\}  ;x,y.R[x;y]))



Date html generated: 2016_10_21-AM-09_41_58
Last ObjectModification: 2016_08_01-PM-09_49_24

Theory : rel_1


Home Index