Nuprl Lemma : usym_functionality_wrt_iff

[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].
  ((∀[x,y:T].  (R[x;y] ⇐⇒ R'[x;y]))  (UniformlySym(T;x,y.R[x;y]) ⇐⇒ UniformlySym(T;x,y.R'[x;y])))


Proof




Definitions occuring in Statement :  usym: UniformlySym(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  usym: UniformlySym(T;x,y.E[x; y]) uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q guard: {T}
Lemmas referenced :  uall_wf iff_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation independent_pairFormation cut hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination independent_functionElimination applyEquality lemma_by_obid lambdaEquality functionEquality cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R,R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}[x,y:T].    (R[x;y]  \mLeftarrow{}{}\mRightarrow{}  R'[x;y]))
    {}\mRightarrow{}  (UniformlySym(T;x,y.R[x;y])  \mLeftarrow{}{}\mRightarrow{}  UniformlySym(T;x,y.R'[x;y])))



Date html generated: 2016_05_13-PM-04_14_44
Last ObjectModification: 2015_12_26-AM-11_30_15

Theory : rel_1


Home Index